

Advanced Structural Analysis

SWAYAM Prabha Course Code – C20

_	Prof. Devdas Menon
PROFESSOR'S	
DEPARTMENT	Civil Department
INSTITUTE	Indian Institute of Technology, Madras
Course	This course mainly deals with matrix analysis of structures.
Outline	It begins with a review of the basic concepts of structural analysis and matrix algebra, and shows how the latter provides an excellent mathematical framework for the former.
	This is followed by detailed descriptions, and demonstrations through many examples, of how matrix methods can be applied to linear static analysis of skeletal structures (plane and space trusses; beams and grids; plane and space frames) by the stiffness method, and also the flexibility method.
	Also, it is shown how simple structures can be conveniently solved using a reduced stiffness formulation, involving far less computational effort.
	Finally, the analysis of elastic instability and second-order response is discussed.
	The main objective is to enable the student to have a good grasp of all the fundamental issues in these advanced topics in structural analysis, besides enjoying the learning process, and developing analytical and intuitive skills.
	This course is also expected to enable a good understanding of how standard software packages (routinely used for frame analysis in design offices) operate.
	Moreover, the student will be well prepared to explore and understand further topics like Finite Element Analysis.

COURSE DETAILS

S. No	Module ID/ Lecture ID	Lecture Title/Topic
1	L1	Lecture - 1 Review of Basic Structural Analysis I
2	L2	Lecture - 2 Review of Basic Structural Analysis I
3	L3	Lecture - 3 Review of Basic Structural Analysis I

4	L4	Lecture - 4 Review of Basic Structural Analysis I
5	L5	Lecture -5 Review of Basic Structural Analysis I
6	L6	Lecture- 6 Review of Basic Structural Analysis I
7	L7	Lecture - 7 Review of Basic Structural Analysis II
8	L8	Lecture - 8 Review of Basic Structural Analysis II
9	L9	Lecture - 9 Review of Basic Structural Analysis II
10	L10	Lecture - 10 Review of Basic Structural Analysis II
11	L11	Lecture - 11 Review of Basic Structural Analysis II
12	L12	Lecture - 12 Review of Basic Structural Analysis II
13	L13	Lecture - 13 Review of Basic Structural Analysis II
14	L14	Lecture - 14 Review of Basic Structural Analysis II
15	L15	Lecture - 15 Review of Basic Structural Analysis II
16	L16	Lecture - 16 Review of Basic Structural Analysis II
17	L17	Lecture - 17 Basic Matrix Concepts
18	L18	Lecture - 18 Basic Matrix Concepts
19	L19	Lecture - 19 Basic Matrix Concepts
20	L20	Lecture - 20 Basic Matrix Concepts
21	L21	Lecture - 21 Basic Matrix Concepts
22	L22	Lecture - 22 Matrix Analysis of Structures with Axial Elements
23	L23	Lecture - 23 Matrix Analysis of Structures with Axial Elements
24	L24	Lecture - 24 Matrix Analysis of Structures with Axial Elements
25	L25	Lecture - 25 Matrix Analysis of Structures with Axial Elements
26	L26	Lecture - 26 Matrix Analysis of Structures with Axial Elements

27	L27	Lecture - 27 Matrix Analysis of Beams and Grids
28	L28	Lecture - 28 Matrix Analysis of Beams and Grids
29	L29	Lecture - 29 Matrix Analysis of Beams and Grids
30	L30	Lecture - 30 Matrix Analysis of Beams and Grids
31	L31	Lecture - 31 Matrix Analysis of Beams and Grids
32	L32	Lecture - 32 Matrix Analysis of Beams and Grids
33	L33	Lecture - 33 Matrix Analysis of Plane and Space Frames
34	L34	Lecture - 34 Matrix Analysis of Plane and Space Frames
35	L35	Lecture - 35 Matrix Analysis of Plane and Space Frames
36	L36	Lecture - 36 Matrix Analysis of Plane and Space Frames
37	L37	Lecture - 37 Matrix Analysis of Plane and Space Frames
38	L38	Lecture - 38 Analysis of elastic instability and second-order effects
39	L39	Lecture - 39 Analysis of elastic instability and second-order effects
40	L40	Lecture - 40 Analysis of elastic instability and second-order effects
41	L41	Lecture - 41 Life beyond Structures & Analysis

References if Any: